One of the main benefits of heat pumps is that they’re an incredibly energy efficient heating method. Ground and air source heat pump efficiencies can exceed 300% since they transfer heat rather than generate it. However, maintaining this level of efficiency is essential for heat pumps to be a worthwhile investment.

Heat pump efficiency depends on how hard they must work to maintain a comfortable room temperature in your home – the lower the flow temperature (the temperature water flows through your radiators), the greater the efficiency. That’s why  bigger radiators are more efficient – with larger radiators and underfloor heating, the heat pump doesn’t have to operate at such a high temperature to heat your house, so the efficiency increases.

Measuring heat pump efficiency

Heat pump efficiency is measured by its Coefficient of Performance (CoP), which shows how efficiently the ground and air source heat pump systems can heat your home under the best possible conditions. Using this scale, commercial air source heat pump efficiency can be as high as 4, whereas ground source heat pumps can reach up to 5. This means that for every unit of electricity you put in, the heat pumps have the potential to produce 4 and 5 units of heat respectively.

To put this into perspective, electric heaters operate at around 100% efficiency (1 unit of electricity produces 1 unit of heat), and even brand-new oil and gas boilers only function at an efficiency of around 90%. However, given that gas is a third of the cost of electricity, heat pumps are required to work above an average efficiency of 300% to compete with conventional gas systems.

It goes without saying that efficiency is just one way to compare different heating systems: our articles heat pump vs. boiler and air source vs. ground source heat pumps look at the arguments for each in more detail.

Heat pump efficiency compared

Type of heat generatorTypical flow temperature (°C)FuelTypical seasonal efficiency (%)Capital cost (£)
Air to air heat pump40Electricity250Medium
Air to water heat pump40Electricity350Medium
Ground source heat pump40Electricity350High
High efficiency boiler, LTHW80Gas, LPG, oil, bio-gas and bio-oil85Low
Condensing boiler, LTHW70Gas, LPG, oil, bio-gas and bio-oil90Low
Combined heat and power90Gas, LPG, oil, bio-gas and bio-oilNot applicableHigh
Solar thermal80Solar radiationNot applicableMedium
Biomass boiler, LTHW80Wood chip, pellets80High
Steam boiler170Gas, oil, biofuels85High
M/HTHW boiler>90Gas, oil, biofuels85High

Based on gross calorific value of fuel
Sourced from CIBSE Guide B1 : 2016

The issue with comparing heat pumps based on their CoP values is that they give unrealistic expectations of heat pump performance, as they only show the efficiency in peak conditions. During the winter when the temperature outside drops, air source heat pump efficiency decreases (sometimes to around 1.5 CoP), as they must use more electricity to maintain your normal room temperature.

It’s much more beneficial to compare heat pump efficiency based on their Seasonal Coefficient of Performance (SCoP). The SCoP gives a true indication of heat pump efficiency because it takes seasonal change into account, giving you an average value over the whole year. The Seasonal Coefficient of Performance is also used to determine how much you’ll be receiving in RHI payments.

Seasonal change doesn’t affect the efficiency of ground source heat pumps to the same degree as it does air source heat pumps, as the temperature underground remains constant throughout the year (roughly 10°C), but the porousness of the ground does. If the ground underneath your garden is a thick clay-like substance, heat will not conduct very well to replace that which is absorbed through the heat pump’s pipes, so the efficiency will be reduced. That’s why the quality of the ground is taken into consideration during the survey process.

The Seasonal Coefficient of Performance does has its limits though. For instance, an immersion heater is used for supplying the house with domestic hot water (usually at an efficiency of less than 100%). If the heat pump supplies the heat for domestic hot water, the SCoP will decrease. Other areas that aren’t taken into account in the SCoP include the electricity required by the circulation pump and defrost cycles for air source heat pumps. Each of these factors will affect your heat pump running cost.

Want to get a quote for a heat pump? Just fill out our contact form. One of our Technical Account Managers will soon be in touch for a quick chat about your project before providing you with a proposal.

You may also like

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.